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STRUCTURAL OPTIMIZATION BY
GEOMETRIC PROGRAMMINGt

A. J. MORRIS

Structures Department, Royal Aircraft Establishment. Farnborough, Hampshire, England

AbICnct-Details are given on the technique of geometric programming tosether with an explanation as to how
it can be used to obtain solutions for certain problems in structural optimiution. Emphasis is laid on the flexi
bility of the method and on its capacity to give lower bounds to the minimum value of an objective function by
means of simple calculations. It is also shown how the method may be used to rapidly ascertain the influence of
any constraints which are imposed on the objective function in order that inactive ones may be omitted before
the main minimization cak:ulation is started. A discussion of possible extensions to the method by the use of
approximation techniques is also included.

1. INTRODUCTION

ONE of the most refreshing developments in the recent history of optimization theory was
the introduction of a remarkable technique known as geometric programming. The
method first came to light in 1961 when Zener [1] observed that a sum ofcomponent costs
can sometimes be minimized almost by inspection when each cost· depends on products
of the design variables each raised to a known power. An account ofthis early work and its
subsequent development is given in the expository book by Duffin et al. [2], some extensions
to the original theory are discussed by Wilde and Beightler [3] and a modern treatment is
presented by Peterson [4] who also references the more recent theoretical papers,
Essentially the method of geometric programming consists of a sequence of operations
upon a set of terms which are expressed as generalized positive polynomials or, briefiy,
posynomials. An example of such a posynomial containing two terms and three variables
might be

f(x) =:: aX~'7xi 1 +bX~'5X3'

A posynomial may thus be defined as a function consisting ofa sum ofterms which comprise
of a positive coefficient multiplied by products of variables and with each variable raised to
an arbitrary power, The technique of minimizing a function by means of geometric pro
gramming has proved incisive and simple in operation when applied to engineering design
[2] but at the present time has been mainly employed in solving problems encountered in
the chemical process industry.

In the case of structural optimization the problem is normally one of minimizing a
suitable objective function whilst conforming to a set of constraints which are imposed by
either physical or design considerations. The most usual method employed for the handling
of this problem [5] is to consider the objective function as a point in a constrained function
space where the minimum is sought by moving along certain preferred directions in a
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sequential manner. However, general computer programs of this type quite often require
large amounts of storage and many of the methods currently available can encounter
convergence difficulties. Further, if the program must be stopped due to the effects of
rank annihilation or excessive time, because the function space may be locally non-convex,
there is no way of knowing how near the current value of the objective function is to its
minimum. These methods can take little advantage of problems with simple mathematical
structures to obtain rapid answers and they only offer limited help in ascertaining the
influence of variables within a given formulation. Geometric programming. on the other
hand, is able to give bounds on the minimum value for an objective function together
with a better overall picture of the relative importance of various parameters and can take
advantage of certain mathematical structures to obtain rapid answers. It has also a most
unusual property in that problems which have local minima are easily treated since a
dual formulation renders them strictly concave and, in this respect. it is unique amongst
the known optimization methods. Even under the most unfavourable conditions when
used in conjunction with a more orthodox sequential technique it will reduce a constrained
minimization problem to an unconstrained one with positive variables which is usually
easier to handle sequentially. But the method does suffer from the disadvantage that the
problem must be cast in posynomial form and it is by no means obvious that all the structural
optimization problems currently of interest can be moulded into this form. However, an
approximate form of geometric programming is presented which offers the possibility of
circumventing this problem.

Despite this disadvantage there are, at least, two areas in the field of structural
optimization where the method can be applied without difficulty. If, for example, a structure
is to be designed a~ording to a set of simple design or cost codes the objective function
will depend upon the dimensions of the structure and these in turn will be constrained by
the demands of the code. In such a case the objective function and the constraints will
probably reduce to simple algebraic expressions which may be transformed into posynomial
form. The other class ofproblem which offers no immediate difficulty is that ofa determinate
structure where the stresses in each element can be obtained from static calculations. Many
problems in this field are of a very simple type which give rise to linear objective functions
with posynomial constraints and can be treated in a very straightforward manner.

The main purpose of the present work is, therefore, to show that the method of
geometric programming can be used to its full advantage when treating structural problems.
In order to make the paper reasonably selfcontained the next section contains a description
of the method in some detail together with an outline of the well-known duality theorem
for convex sets as it applies to geometric programming. The third section illustrates the
principles of the method by minimizing a simple two-bar truss which calls into play all the
ideas ofsection two. Aprocedure for computerizing the method is then explained and section
five shows how this may be used to solve a ship bulkhead problem. This particular problem
has been solved in previous papers and the primary purpose for its inclusion is to illustrate
how the computerized geometric programming technique may be successfully applied to
the minimization of meaningful structural problems.

Finally, geometric prosramming has an advantage Which is not immediately obvious
but adds to the attractiveness of the method It is possible to show that by a simple trans
formation any linear programme can be expressed as a geometric programme of a special
type in which each posynomial has only a single term. Although this point is not pursued
in the present paper additional information can be obtained by consulting Duffin et ai.
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2. THE FUNDAMENTALS OF GEOMETRIC PROGRAMMING
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Consider any objective function go which is the sum of no terms dependent upon a set
of variables Xl' X 2 , .•• , XIII'

no
go(X-) = " C x':i1~'2 ..... ,...'- i1 2,···,Am

i= 1

where the c;'s are positive constants and the powers alj are real numbers which may be
positive, negative or zero. This expression may be re-written in a more compact notation
as,

where

no

go(x) = L P~x),
i z 1

III

PI(X) = Cl fl xj'J
j= 1

(2.1a)

(2.tb)

and constitutes a posynomial formulation for the objective function. If this function is to be
minimized subject to a set of constraints which can also be written in posynomial form the
resulting problem is known as the primal problem of geometric programming or simply
the' primal programme.

P"imal p"ogramme
Find a vector x which minimizes (2.1) subject to the constraints

Xl ~ 0,

and

gl(X) S; 1,

where these additional g's are given by

i = 1, .. . ,m (2.2)

(2.3)

and

Ilk

g,,(x) = L Pj(x),
jxlJ.

k = 1, ... ,p (2.4)

k = 1, .. . ,p

with
no = number ofterms in go(x)

n1 -no = number of terms in gl(X)

np -np _ 1 = numberoftermsingp(x)

noting that n = np = the total number of terms, i.e. the summation ofall the terms in all the
posynomials.
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As before the term PJx) is given by (2.1b) where the exponents aij , are once more
arbitrary real numbers, and the coefficients Ci are all positive. The matrix (a i) is termed the
exponent matrix, it has n rows and m columns.

In the above formulation the objective function go(.i) is termed the primal function,
the variables Xl' X2" .• ,X", are called primal variables. The constraints (2.2) are termed
natural constraints, and those given at (2.3) are called the forced constraints. Collectively
these constraints are referred to as primal constraints.

The real power of geometric programming will be seen to lie in its ability to maximize
sets of product functions called the dual programme. We now state this dual problem of
geometric programming in the following way.

Dual programme

Find a vector i5 that maximizes the product function

V(i5) = [fI (S) 6'J fI A.k(i5)"k(3)
i=1 t5i k=1

where

(2.4a)

nk

A.k(i5) = L t5 i ,

i=l"

subject to the linear constraints

and
n

L alA =0,
i:= 1

k = 1, ... ,p

j = 1,2, ... , m

(2.5)

(2.6)

(2.7)

with aij' Ci' lk' nk the same as in the primal programme.
In evaluating the product function V(i5) it is to be understood that ~ = X-X = 1 for

X = 0.
The product function V(i5) is termed the dual function and the variables 15 1 , 15 2 , ... , .5n

are called dual variables. Relation (2.5) is termed the positivity condition and (2.6) the
normality condition whilst (2.7) constitutes the orthogonality condition. Collectively, these
conditions are known as the dual constraints.

In examining these two formulations it is seen that hi is associated with the ith term
Ci~' I, ••• ,x:;"' of the primal programme, so that each term of glx), k = 0, 1, 2, ... ,p, is
associated with one and only one of the dual variables .5 1 " •• ,.5n • Similarly, each factor
Ak(i5»).k(6) of V(i5) comes from a forced constraint gk(X) ~ 1. It may be noted that no such
factor appears from the primal function because the normality condition forces A.o(i5) to be
one.

Even though the two families of primal and dual programmes are mutually exclusive
there does exist a correspondence between the class of all primal programmes and the class
ofall dual programmes, and a duality theory relates the properties ofeach primal programme
to the properties of its corresponding dual.
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(2.8)

Before stating any of the duality theorems of geometric programming certain details
of nomenciature require elaboration. First of all a programme (either primal or dual) is
said to be consistent ifthere is at least one point (vector) that satisfies its constraints. Second,
the primal programme is said to be superconsistent ifthere is at least one vector x* which has
positive components such that,

g.(x*) < 1, k = 1, 2, ... , p.

In terms of the preceding concepts we state theorem 1, which is called the first duality
theorem of geometric programming and is the main theorem of the current formulation.

Theorem 1

Suppose that the primal programme is superconsistent and that the primal function
go(x) attains its constrained minimum value at a point which satisfies the primal constraints.
Then:

(i) The corresponding dual programme is consistent and the dual function V(~) attains
its constrained maximum value at a point which satisfies the dual constraints.

(ii) The constrained maximum value of the dual function is equal to the constrained
minimum value of the primal function.

(iii) If ~* is a maximizing point for the dual programme each minimizing point x* for
the primal programme satisfies the system of equations

{
Pj(x*)fgo(x*), i = 1 ... no

o~ =
J )".(~*)Plx*) i = no +1... n

k = 1... p,

where each Pi in the expression A.(~*)P~x·) is a term contained in theposynomial constraint
equation g.(x). ~. further satisfies the system,

k = 1,.. p. (29)

It may be noted that equations (2.8) and (2.9) provide a method whereby the minimizing
vector x* can be found from a knowledge of a maximizing vector ~*. Although it has not
been stated above it is possible to show [2] that theorem 1 may be extended to obtain upper
and lower bounds to the primal and dual programmes. Thus for a set of feasible vectors ~

and x giving go(x) and V(~), respectively, we have that

(2.10)

Before leaving the first theorem it may be observed by way of equation (2.9) that for
any maximizing vector ~*, those dual variables which correspond to tight constraints
[glx*) = 1] are positive, i.e. o( > 0, whilst those associated with loose constraints
[gk(X*) < 1] are zero, i.e. o( = O.

Theorem 1 is the most important theorem from a practical viewpoint but there are
others which may be found in Duffin et al. [2] together with theorems applicable to the
case of extended geometric programming.

When a solution to a given geometric programming problem is required the procedure
is to form the dual function and then maximize this subject to the linear equations and
nonnegativity constraints on the dual variables. A particularly easy instance arises where
the linear equations have a unique solution which occurs when the number of equations
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in the dual constraints is the same as the number of dual variables. If it turns out that there
are insufficient independent equations the difference between the number of variables and
the number of independent linear equations is conventionally called the number of degrees
of freedom. In the present case there are m orthogonality conditions, one for each variable
x... ,a single normality condition and n dual variables giving a system with n- m-1 degrees
of freedom. It has been suggested by Duffin and his colleagues that this quantity should be
called the degree of difficulty. The degree of difficulty is then identical to the number of
independent variables over which the dual function'is to be maximized.

When the degree of difficulty is zero the objective function (2.1) is easily minimized by
forming the dual function and solving the set of equations (2.6) and (2.7). The required
minimum is then calculated by substituting these values for the dual variables into the
dual function. The values for the primal variables at the minimum point can then be found
from theorem 1, part III. If the degree of difficulty is greater than zero the procedure des
cribed will not yield values for all the dual functions. Solving the normality and orthogonality
equations in this case leads to a set ofdependent dual variables being expressed in terms ofa
set of independent ones. These independent variables are then equal in number to the
degree of difficulty. The resulting expressions for the dual variables may then be substituted
into (24) to produce a dual function which depends upon a set of known constants Cj and a
set ofunknown dual variables. The method of finding the maximum ofthe dual programme
with a non zero degree of difficulty is left to a later section where it will also be seen that
much information can be extracted from this formulation without ever finding a maximizing
vector 0*.

3. ILLUSTRATIVE EXAMPLE WITH ZERO DEGREE OF DIFFICULTY

Consider the two-bar pinned truss with tubular steel members shown in Fig. 1 which
carries a vertical load of 2P. This problem was also used by Fox [6] in a similar illustrative

28
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2P

~
Section I-I V

FIG. 1. TWOo-bar pinned truss.
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role. Since the thickness of the tube t and the half span B are assumed fixed the problem is
to find the minimum weight by selecting appropriate values for the mean diameter of the
tubes d and the height H subject to the constraint that the stresses in the tubes should not
exceed the yield stress. The following numerical values are taken: P = 33,000 lb ; t = 0·1 in.;
B = 30 in.; 0'0 (yields stress) =. 60,000 Ib/in.2 ; p (density of material) = Q.3Ib/in.3.

Thus the primal problem consists of minimizing the weight

(3.1)

su~ject to

which may be re-written as

1 ~ 1'75(900~H2)t. (3.2)

Clearly both (3.1) and (3.2) are not pOlynomials due to the presence of the term (900+H2)t.
This difficulty may be overcome by introducing a related function together with an
additional independent variable and constraint. The related function for (3.1) is then

W = Q.188dz

where z is the new independent variable, and the new constraint is,

Introducing the notation Xl = Z, X2 = H, X3 = d the primal problem becomes

minimize W = 0·188xIX3'

subject to

1 ~ 900x12+x~x12.

The associated dual problem is, therefore, to maximize

subject to the dual constraints,

i """ 1,2,3

b1 = 1, (normality)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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and (orthogonality)
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Xl) bl +b2 -2b3 -2b4 = 0,

X2) -b2 +2<54 = 0, (3.9)

x 3 ) b1 -b2 = 0.

Where the notation xJ is used to indicate that the equation has been derived by considering
the orthogonality condition for the coefficients of the given Xi' The solution to the set of
equations (3.7H3.9) is straightforward since the problem is one with zero degrees of
difficulty. Hence the maximizing vector for the dual programme is given by,

<51 = 1, <51 = I, ~* _ 1.
Q3 - 2'

and the maximum value of the dual function [and thus the minimum for (3.1))

V(b*) = (0.188) \1.75)1(900)t(_1)t(~ ~)(t+t)
1 V2 1~ 2+2

which yields

V(b*) = 19·8 lb.

The minimizing values for the individual x;'s can now be obtained directly by applying
equations (28) and (2.9). The value of Xl can be immediately found from the first term of the
constraint (3.5),

therefore

XI = 42·426

similarly X2 is found from

giving

X2 = H = 30,

and X3 is found from (3.4) to be 2·475. Hence the solution to tbe primal problem is,

w= 19·81b
with

H = 30, d = 2·475.

Achieving a solution vectorc5* to the dual problem by using only equations (3.7H3.9)
focuses attention on an important invariance property ofzero degree ofdifficulty geometric
programmes. This states that solution vectors to the dual programme are independent
of the coefficients C/o Thus, if one solution has already been found, a variation in the
maximum value of the dual function for variations in the primal coefficients C/ can be
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obtained simply by substituting the modified Cl values into (3.6) and calculating V(cS*)
with the aid of the known cS*'s since these remain the same. In this way one complete
solution giving a maximum value to a given problem is the key to a whole family of related
maxima (or minima).

4. PROBLEMS WITH NON-ZERO DEGREE OF DIFFICULTY

Turning our attention to a geometric programme with positive degree of difficulty d,
it is still convenient to operate with the dual programme. The first step in obtaining a
solution is to construct basis vectors 5U!, j = 0, 1, 2 ... d so that the general solution to the
dual constraints is

d

J = tf°)+ L r/J.
j= 1

The r j are arbitrary real numbers satisfying the positivity condition

(4.1)

"b!O) + ~ r Mj) ..,. 0
I £.. i I ~ ,

i= 1
i = 1,2, ... '"1

where bP') is the ith component of the vector 5(i). In this new formulation the variables r j

are called basic variables and the vector 5(0), which satisfies both normality and ortho
gonality, is the normality "ector. The vectors 5(j),j = 1,2, ... , d which are linearly indepen
dent solutions to the homopneous counterpart of the normality and orthogonality
conditions are termed nullity vectors.

The dual programme bas now undergone a transformation and may be re-formulated
in the following manner:

Transformed dual programme
Find the maximum value of a product function

where

(4.2)

"cSJr) = blO)+ L riW),
j:= 1

and

d

Ak(r) = A~O)+ L rAil,
i= 1

The vector r is subject to the positivity constraints

"b!O)+ ~ r b!J') ..,. 0
I £.. i I ~ ,

i-I

i = 1. .. "

k = I, . .. ,p.

i = 1, ... ,"

(4.3)

(4.4)

(4.5)
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n"

;.1° - L b~i}
j=lk

i = 0, 1, ... , d. (4.6)

The factor Ci and lk have the same meaning here as in the definition of the primal programme.
The normality vector 5(01 satisfies the normality condition

110

I bIOI = 1
i= 1

and the orthogonality condition.

(4.7)

It

" a· ·b(O) = 0,L.. I) I .

i= 1

j = 1, ... ,m. (4.8)

The matrix (ajj) is the exponent matrix of the primal programme.
Since the basis vector 5is obtained directly from the exponent matrix and is thus known,

a lower bound on the primal function can be obtained by simply finding any vector ;:
whose components satisfy equations (4.5) and then calculating the value of the transformed
dual function V(r). An upper bound can be obtained by selecting a set of primal variables
which do not cause the primal constraints to be violated and then calculating a new value
for the primal function. On many occasions a few calculations performed in this way can
achieve close bounds on the desired optimum and are able to rapidly indicate the closeness
or otherwise of a given design to its optimum. This is of practical importance in many
areas ofengineering design where long experience can allow an engineer to use his intuition
and obtain a near optimum design wi~hout the need of special optimizing routines.

If it is necessary to find the maximum to the transformed function V(f) this, as we
have seen, requires that the normality and nullity vectors b(J) be determined from the
exponent matrix (aij)' The method normally adopted in determining these vectors closely
parallels that employed by Brand [7] in his matrix algebraic treatment of the Pi theorem
of dimensional analysis. An explanation of the details of this procedure are left to a later
paper which will deal with computational aspects of geometric programming.

Once the nullity and normality vectors have been determined the problem reduces to
one of maximizing V(r) subject to the single set of constraints (4.5). At this stage it is appro
priate to use a sequential minimization (maximization) scheme to move to a complete
solution and in the present context a suitably modified version of the method of "conjugate
directions" due to Powell [8] proved to be satisfactory. However, V(f) is not always concave
and it is better to use log V(r) as the cost function, when sequential methods are employed,
since the logarithmic function does not suffer this disadvantage. It is, indeed, one of the
remarkable features of this method that even if the primal programme has a set of local
minima the function log V(r) is always strictly concave.

A computer program has been written on the basis of the procedure explained in this
section which requires, as input data, a knowledge of the exponent matrix together with
other details of the primal problem. The routine then calculates the normality and nullity
vectors and hands over the problem to Powell's subroutine which finds the minimum of
1/10g V(r) in terms of the variables r j • !fit is not necessary to find the maximizing vector or if
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good starting values are required before initiating the Powell routine provision for calculat
ing lower bounds on the maximum V(r), by selecting values for the r/s which satisfy
equations (4.5), is incorporated in the routine.

5. A DESIGN CODE PROBLEM

The problem to be considered is that shown in Figs. 2 and 3 and consists of optimizing
the design of a vertically corrugated transverse bulkhead ofan oil tanker. The cost function
is taken to be the total weight of the bulkhead and is subject to constraints on performance
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characteristics and on certain dimensions imposed by specifications laid down in Det
Norske Veritas. This problem has been discussed by Kavlie et al. [9J and more recently by
Bracken and McCormick [10], in both cases the solution was sought using one of the
normal sequential techniques.

In formulating the problem it is assumed that the shape of the corrugations are identical
in all the panels and that the positions of the stringers and the width of the bulkheads are
fixed The basic design variables are shown in Fig. 3 for one panel and thus for all three
panels are:

b l = width of Bange (em);
b2 = length of web (em);
d = depth of corrugation (em);
tl = thickness of plate in top panel (em) ;

tm = thickness of plate in middle panel (em);
t. = thickness of plate in bottom panel (em).

By means of these variables and the distance s, defined in Fig. 3, the total weight may
be defined as,

w = 1476(b1 +b2)(495tt +385t",+315tb)

S
(5.1)

where y = the density of the material in ton/em3
•

This cost function (5.1) is then subject to constraints on the section modules for each
panel, on the moments of inertia and on the minimum plate thickness all of which are
imposed by D.N.V. This procedure leads to a problem requiring the minimization of (5.1)
subject to 16 constraints which can be solved by the geometric progamming subroutine
without much difficulty and yields answers which agree with those given by Bracken and
McCormick.

In discussing the problem in detail it is more convenient not to deal with the entire
problem together with its 16 constraints but to examine the optimizing of the bottom
panel alone. In this case the cost function (5.1) reduces to

(5.2)

where the density y (7·850 x 10- 6) which has been used is that employed by Kavlie et al. [9].
The constraint equations are not explained in detail in the present formulation since this
aspect is adequately covered in Refs. [9, 10], but in the case of the bottom panel these are
found to be

1 > g(l) = 53.64~2Xi I Z'
- (2·4x I +X3)[X3 -(x2 -XI) ]+

1 g(2) _ 264(8·94xz)tx;1
~ - (2·4x I +x3)(xj -(x2 -X1)2]'

1 ~ g(3) := o.Ol56x t xi I +0.15x;1

1 ~ g(4) := 0.OlS6x3X; 1 +O.15x;1

1 ~ g(5) := 1.05x; I

(5.3)
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where in both (5.2) and (5.3) the free variables are,

859

The first thing to notice in the constraint equations is that neither g(1) nor g(2) are in
posynomial form due to the presence of the two terms (2Ax l +X3) and x~ -(Xz -X I )2 in
the denominators. The first of these expressions can be approximated by using the formulae
given in tbe appendix and to this end (A.4), (A.5) are selected rather than (A. I) because the
resulting approximation form is accurate for wide variations of Xl' X3' The second term
[x;-(xz-x1fJ could be dealt with in exactly the same manner but it is more accurate
to introduce a related function as in Section 3 and then to approximate the remaining
non-posynomial terms. Thus a new variable Xs is introduced and a new constraint

(5.4)

where the term (Xl -XI )2 requires an approximate posynomial form obtained from (A.4),
(A.5).

Thus, the primal problem is to minimize,

subject to the primal constraints,

1 ~ g(3) == X;X32+0·045x~2·Sxi,sX32,

1 ~ g(4) == 0·0156xIXil+0·15xil,

1 ~ g(5) == 0·0156x3xil+0·15xi!,

1 2: g(6) = 1·05xi l
,

(5.5)

(5.6)

with the approximating point chosen as xT == x1 = 50, x! == 90. It is at this stage that the
problem is handed over to the computer and the description which follows gives an outline
of the method whereby a solution is achieved and, in the main, uses the information
obtained from the subroutine. The dual of equation (5.5) is to maximize,

v = (1'~~7) al (1'~:7) a2(15'77)d~(143'65)64(;J d5(~~S)a6(0~~56)a,

(0~:5) a8 (0'~:56) a9(~::) 6
1
°(1'05t"(bs + b6)(65H6>(c5 7 +b8)(6''''.)(.59+.51O)(a9'hhol

subject to the normality condition

(5.7)
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(5.9)

and the orthogonality conditions

1 o -().706 -0·706 o -2·5 0 0 0 0 151 10 \\

-1 -1 1 1·333 0 4-5 0 0 0 0 0 152

=(~0 1 -0·294 -0·294 -2 -2 0 0 1 0 0 c53

-1 -1 0 0 -1 -1 -1 -1 -1 54
0 o -1 -2 2 0 0 0 0 0 0" 55 \0

()6 (5.8)

<5 7

bs

(j9

<5 10

511

together with the positivity conditions ()j ~ 0, i ::: 1, ... , 1L
The problem must now be transformed in terms ofthe variables fjand suitable normality

and' nullity vectors found. In order to find these vectors the algebraic Pi theorem analysis
[7] requires that the matrix comprising the first five columns of (5.8) be non-singular,
which turns out not to be true for the present formulation. In order to overcome the
difficulty it is only necessary to interchange the columns of (5.8) until a suitable matrix is
found and simply placing ~3 beneath b11 and moving aU the dual variables, with the excep
tion of ~1 and ~2' up one place is sufficient to give a non-singular matrix. Performing the
algebraic operations gives a set of transformed dual variables

<5 1(r) == -0·077947 +0·642501r1 +0·625047'2 +0·642501'3 +0·642501'4

+ 1·065801'5'

52(r) == 1·077947 -0·642501'1 -0·625047'2 -0·642501'3 -0·642501'4

-1·065801'5'

15 3(,) == ().374953-0·374953r1 -0·34953'3 -0·374953'4 -1·87420'5

c5i') == 0·374953-().374953'1 -().374953'3 -0·374953'4 -().624578'5'

155(,) == 0'108902+0'10882'1 +0·108821'3 + ().108820r4 -0·000204'5,

b6 (r) = 0·625047 -0·625047'1 -0·625047'2 -0·625047'3 -().625047'4

-0·625047'5'
c5 7(r) == '1 ,

08(') == 0·625047'2'

C>9(r) := '3,

b lO(r) == '4'

011(') == 2·49925'5
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where the basic variables rJ must comply with (4.5). With the aid of (4.5), (5.9) and (5.7)
we can find lower bounds on the function to be minimized. For example, setting

r2 == r3 = r4 == rs == 0

means that a satisfactory value for r1 must lie in the range

1 ;;:: r l ;;:: 0·121318.

Any number from within this range may be selected and substituted into (5.9) to give
numerical values to the dual variables which can then be used to calculate V(f) (5.7).
If r 1 == 0·5 is selected the vector (ai, a2 , ••. , t>11) is (0·243, 0·757, 0·187, 0·187, 0·163, 0·312,
0·500,0,0,0, \0) which gives V(f) = 1·11. However, the original design given by Kavlie
et aI. [9] before any optimization was attempted gave a weight 1·79 tons for the bottom
panel. Thus the minimum weight for this panel is 1·45±0·34 tons and a trivial calculation
has yielded an answer accurate to within a maximum possible error of 23·4 per cent.

Two courses now lie open either, these bounds can be improved, or the computer
routine can be allowed to initiate the final sequential search subroutine. In fact a compromise
between the two alternatives was sought in that an improved lower bound was found and
the values for the basic variables used as the starting values for the final sequential part.
The eventual result gave the minimum weight of the bottom panel as 1·35 tons and this is
achieved with a minimizing vector Xl = 57·69, X2 = 105·52, X3 == 57·69, X4 = 1·05.
Obtaining this result required approximately 5 sec of central processing time on the Royal
Aircraft Establishment's ICL 1907 computer. This weight remained unchanged (to two
decimal places) when the values for the operating point in the approximating scheme were
varied by ±20 per cent though changes in the minimizing vector of about 1 per cent were
noted. The comparison result given in Ref. [9] was Xl = 56-3, X2 == 100·8, x3 =: 58, X4 ==
1·05 and a minimum weight of 1-40 ton but this appears to be in error since it violates one
of the constraints.

6. ASCERTAINING THE INFLUENCE OF CONSTRAINTS

The ability of geometric programming to find lower bounds on the minimum value for
the objective function permits the taking of certain liberties which would be totally
inappropriate in the context of a standard sequential minimization routine. Consider the
problem of the previous section, if we had decided to seek a lower bound on the minimum
at the point where the equations (5.8) had been formulated it would have been quite
acceptable to put bs = b6 == O. Such a procedure would require that the terms (l/c5s)~!'

(0·045/c56)~ in the dual function (5.7) be put equal to 1 and any influence exerted on the
solution by the constraint g(3) ;$; 1 would disappear. Thus removing a constraint. or
groups of constraints, from the primal problem simply gives rise to a lower bound on the
solution. The structural engineer is then at liberty to ascertain the influence ofthe constraints
by solving a group ofsimple problems each using a different selection of the total number of
constraint equations. In many instances these simple problems may be so arranged that
they reduce to zero degree of difficulty.

7. CONCLUSIONS
The preceding sections have shown how the geometric programming technique may

be used to solve certain classes of structural optimization problems. In particular emphasis
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has been placed on the computerized version of this method which can be made to handle
large numbers of variables with the aid of a bounding technique. At the present moment
this automated version can only deal with posynomial formulations and any approximation
must be done before the problem is given over to the computer. However, judging from
hand calculations there is no reason why the program should not be extended to form its
own approximate posynomials and then proceed to solve a sequence of geometric pro
grammes. In this situation it would be perfectly feasible for the method to handle complicated
constraints that are not expressible as explicit functions of the design variables. It would
then be possible to optimize statically indeterminant structures both with and without
variable geometries. Ofcourse, an evaluation of the efficiency ofgeometric programming in
performing this type of calculation must await the appearance of numerical results.
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APPENDIX

In this section several transformations arediscussed which permit the primal programme
to include functions which are more general than posynomials. Suppose that the objective
function or one of the constraint equations contains a positive function of the form

F = ft(x),
fz(x}

where either or both of 11 and 12 could be non-posynomial forms. If 11 is defined by a
function of the form

where all the c/s are positive real numbers and n is any real number we may proceed as in
Section 3 and introduce a related variable Z I such that II S ZI' Similarly if f2 is defined
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by a function of the form

(.± Cix';" ... X::'")"
,= 1
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where C1 is positive but all other c;'s are negative and n is any real number then following
the procedure of Section 5 we use the related function Z2 such that 12 ~ Z2' The in
equalities in the expressions relating the f's and Z's are important since they ensure that
11 and Z1 share the same infinum and /2 and Z2 share the same supremum. Thus any
approximation scheme must satisfy the same inequality relationships and if we have
1'1 :::: /1 and 12 :::: /2 then /1 ~ 1'1 and /2 ~ /2 .

In examining the expressions for 11 and /2 in the above paragraph it may be observed
that the idea of using a related function for these terms cannot be applied when some of the
c;'s in the form for /1 are negative or some of the c;'s in the form for /2 are positive (other
than c1)' This occurs because the related constraint equation which must be introduced
when either Z1 or Z2 are used does not have the required posynomial form. However,
before discussing a general method of approximation consider the case when both 11 and
/2 are ordinary posynomials with /2 having at least two terms rendering the function F
a non-posynomial form. In order to deal with this situation it is possible to employ the
geometric inequality on /2 such that

where

r r (C.xf il
••• ~',")6;

_ 11 im I I '" _'12 - .L Cix't , •.. , x:. ~.n b. - 12'
,= 1 ,= 1 I

(A.1)

b1 +(;2+'" +(;'" = 1.

Thus values for the b;'s must be chosen and subsequently improved by iteration. Consider
now the cases when

11 = (.f: cjx';" ... a::'")"
,= 1

where C1 is positive and all other c;'s are negative, and

(A.2)

(A.3)

where all the c;'s are positive. Ifmixed cases occur when some ofthe c;'s in (A.2) are positive
and some of the c;'s in (A.3) are negative these coefficients can be removed by introducing
related functions and we return to forms defined in (A.2) and (A.3). It is immediately clear
that the approximation scheme introduced at (A.I) may be generalized to cope with (A.3),
and since (A.2) can be transformed into the form of (A.3) then,

( r )" {r (c.x':"'" ~''") 6'}"12 = ,L Cjx';" ... x::'" ~ n ,1 b. '" =12
1= 1 1= 1 I

where, as before, (;1 +(;2 + ... +(;r = 1 and tl\e correct values for the individual b's must be
chosen by means of an iteration process. However, Duffin et al. (2J have presented an
alternative approximation scheme which may be used for either /1 or /2' If it is necessary
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(AA)

(A.5)

to find an approximate form h'(.x) (which might be J~ or J,J for a function h(x) then an
appropriate single-term posynomial is given by

h'(x) ~ h(x.)(x~)al(x;)a2 ... (x:)a"',
Xl X2 Xm

where

_(Xj~) ._ Jaj - h ~ ] - 1, -, ... , m.
CXj ;:=X"

The vector (xf, x!, ... ,x:) is an estimate to the mean value of the range of the variables
and is called the operating point. Once this point has been chosen and the formulae (A.4)
and (A.5) applied the ordinary techniques of geometric programming may be used to find
a minimum to the primal problem. However, if the operating point turns out to be distant
from the minimizing point it is necessary to up-date the "'alues of xf, x~ , ... , x~ and repeat
the calculation.

Although Duffin et ai. introduce (A.4) they do not indicate whether or not it satisfies
the inequality conditions enumerated in the first paragraph of this section. In order to
answer this point consider the expression

h*/h = R(x')

where R(x) is equivalent to the l.agrangian form of the remainder in Taylor's series and is
evaluated somewhere between x* and the current value of x, namely .x'. A fairly simple
calculation reveals that

R(x') = (;,:r(:~r2 ... (::r"',
where for the cases under discussion the parameters IJ.i' i = I ... m, take the form such
that for /1 the approximating function <5;, found by using (A.4), (A.S), gives /1 ~ 1'1 and
for /2'/2 "2/;.

In tbe case of the strictly posynomial term /2 tbe form of (A.4) is exactly that given by
Avriel and Williams [II] in their discussion of complementary geometric programming.
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A6cTpurr-,llaIOTcli HeKoTopwe nOAp06HOCTH MeTOLla rCOMeTpH'lCCICOrO nporp8MMHpoaaHHll, BMecTe C
BWllCHeHHeM HCuonlo30aaHKlI noll 3lUUl'lK nnll nonY'IeHHlI peweJULll, KacalOWHXCII HeKoTopwx 38118'1
Ol11'HMaJlH3aWlH lCotICTPYJCIIHIL. Oco6eKHO nOAIICPICHaaeTCll npHrOllHOCTIo MeTOlla H 803MOllCHOCTb UOIJ)"IeHHII
6onY'leHH. GoJlee HH3ICHX npeJ:ICJlOB llJUI MHHHMa.lUtHOro 3Ha'leHHJI 38ll8HHOA cPYHXUHH, nyTeM HecnOlPWX
paC'leTOB. YKa3WBaeTCli TBJ[lICe B03MOllCHOCTb HCUOJlIo3OBaHHlI MeTO,/lB nna 6wCTporo BW.CHeHHII aJlHlIHHlI
BCeX orpaHH'IeHHIl, HaJlOllCeHHWX HB 3allBHHYIO cPYHXUHIO, C uenBIO nponycJCB orpaHHrenHIl 6e3 HHJCoro
.!lellerBHII, 38'leM H8'1HeTCIi OCHOBHoll paC'IeT MHHHMaJlII3aUHH. 06cyllCLlBeTCIi TBJClICe B03MOllCHOCTb
o606weHHII MeTO,tlB, nYTeM HCUOJlIo3OBaHHll nPH6nHlICeHHWX paC'IeTOB.


